

Poster ID: WED-PM-337

Towards All-in-one Pre-training via Maximizing Multi-modal Mutual Information

Weijie Su^{*}, Xizhou Zhu^{*}, Chenxin Tao^{*}, Lewei Lu, Bin Li, Gao Huang, Yu Qiao, Xiaogang Wang, Jie Zhou, Jifeng Dai

Presented By Weijie Su

Large Vision Model Pre-training

Method & Model	Stage 1	Stage 2	Stage 3
SwinV2-G (3B) [a]	Masked Image Modeling _{pixel}	Image Classification	_
BEiT-3 (2B) [b]	CLIP	Dense Distillation	Masked Data Modeling
FD-SwinV2-G (3B) [c]	Masked Image Modeling _{pixel}	Image Classification	Dense Distillation

[a] Liu, Ze, et al. "Swin transformer v2: Scaling up capacity and resolution." CVPR 2022.

[b] Wang, Wenhui, et al. "Image as a foreign language: Beit pretraining for all vision and vision-language tasks." arXiv 2022. [c] Wei, Yixuan, et al. "Contrastive learning rivals masked image modeling in fine-tuning via feature distillation." arXiv 2022.

All existing large vision model pre-training methods are multi-stage

Problems of Multi-stage Pre-training

- Difficult to Locate the Problematic Pre-training Stage when the final performance is poor
- Catastrophic Forgetting

• the linear classification accuracy of FD-DINO [1] in stage 2 (76.1) is worse than that of stage 1 (78.2)

Method	Backbone	res.	F. D.	IN-1	K	ADE20K
				f.t.	linear	
DINO [3]	ViT-B	224^{2}		82.8	78.2	46.2
FD-DINO	ViT-B	224^{2}	\checkmark	83.8 (+1.0)	76.1	47.7 (+1.5)

Problems of Multi-stage Pre-training

 Difficult to Locate the Problematic Pre-training Stage when the final performance is poor

• Catastrophic Forgetting

• the linear classification accuracy of FD-DINO [1] in stage 2 (76.1) is worse than that of stage 1 (78.2)

Method	Backbone	res	БD	IN-1	K	ADE20K
Wiethou	Dackbolle	105.	Г. D.	f.t.	linear	
BEiT [1]	ViT-B	224^{2}		83.2	37.6	47.1
MAE [17]	ViT-B	224^{2}		83.6	68.0	48.1
SimMIM [45]	ViT-B	224^{2}		83.8	56.7	47.6
SimMIM [45]	Swin-B	224^{2}		84.8	24.8	48.3
WiSE-FT CLIP [40]	ViT-L	336 ²		87.1	-	-
DINO [3]	ViT-B	224^{2}		82.8	78.2	46.2
FD-DINO	ViT-B	224^{2}	\checkmark	83.8 (+1.0)	76.1	47.7 (+1.5)

Problems of Multi-stage Pre-training

- Difficult to Locate the Problematic Pre-training Stage when the final performance is poor
- Catastrophic Forgetting
 - the linear classification accuracy of FD-DINO [1] in stage 2 (76.1) is worse than that of stage 1 (78.2)

Method	Backbone	res.	F. D.	IN-1 f.t.	K linear	- ADE20K	
Our Solution:	all-in-o	one s	ingle	-stage	pre-	training	under an unified perspective
DINO [3] FD-DINO	ViT-B ViT-B	$ \begin{array}{c c} 224^2 \\ 224^2 \end{array} $	\checkmark	82.8 83.8 (+1.0)	78.2 76.1	46.2 47.7 (+1.5)	

All-in-One: M3I Pre-training

M3I Pre-training – Result on 1B model

Pre-training Approach	Model	Pipeline	Public Data	Private Data	ImageNet	COCO	LVIS	ADE20k
8 11		1			val	test-dev	minival	val
M3I Pre-training	InternImage-H [78] (1B)	Single Stage: M3I Pre-training	427M image-text 15M image-category	-	89.2	65.4	62.5	62.9
[47]	Service $V(2, C)$ (2D)	Stage 1: Masked Image Modeling _{pixel}	15M image astronom	55M :	80.2	62.1		50.0
[47] 8	Swiiiv2-G (5B)	Stage 2: Image Classification	15M image-category	55M image-category	89.2	03.1	-	59.9
	BEiT-3 (2B)	Stage 1: CLIP	21M images tout	400M image-text			-	62.8
[77]		Stage 2: Dense Distillation	21M image-text 15M image-category		89.6	63.7		
		Stage 3: Masked Data Modeling	15101 Innage Category					
		Stage 1: Masked Image Modeling _{pixel}						
[80]	SwinV2-G (3B)	Stage 2: Image Classification	15M image-category	55M image-category	89.4	64.2	-	61.4
		Stage 3: Dense Distillation						
[†] previous best					89.1 ^a	64.5 ^b	59.8 [°]	60.8 ^d

† previous best results on these tasks with only public training data. Results reference: a. MOAT, b. Group DETR v2, c. GLIPv2, d. Mask DINO

Achieves SoTA performance on various benchmarks in public-data only setting

4 Types of Visual Pre-training Methods

Unified Framework: Maximizing Mutual Information

Unified Framework: Maximize Mutual Information

(1)

All-in-One: M3I Pre-training

Unified Framework: All Instantiations

Pre-training Method	Typical Work	Input Data <i>x</i>	Target Data y	Input Representation z_x	Target Representation z_y	Regularization $H(p(z_y t_y))$	Distribution Form \hat{P}			
Supervised Pre-training : Image Classification	ViT [24]	view1	category	dense feature	category embedding	negative categories	Boltzmann			
Weakly-supervised Pre-training Contrastive Language- Image Pre-training	: CLIP [55]	view1	text	dense feature	text embedding	negative texts	Boltzmann			
Self-supervised Pre-training (intra-view):										
Auto-Encoder	-	view1	view1	dense feature	dense pixels	-	Gaussian			
¹ Dense Distillation	FD [80],BEiT v2 tokenizer [54]	view1	view1	dense feature	dense feature	stop gradient	Gaussian			
Global Distillation	-	view1	view1	dense feature	global feature	stop gradient	Boltzmann			
Masked Image Modeling _{pixel}	MAE [30]	masked view1	view1	dense feature	dense pixels	-	Gaussian			
² Masked Image Modeling _{feature}	data2vec [4],MILAN [35], BEiT [5],BEiT v2 [54]	masked view1	view1	dense feature	dense feature	stop gradient	Gaussian			
Masked Image Modeling _{global}	-	masked view1	view1	dense feature	global feature	stop gradient	Gaussian			
Self-supervised Pre-training (in	ter-view) :									
Novel View Synthesis	-	view2	view1	dense feature	dense pixels	-	Gaussian			
Dense Instance Discrimination	DenseCL [79]	view2	view1	dense feature	dense feature	negative samples	Boltzmann			
³ Instance Discrimination	MoCo [31],BYOL [27], Barlow Twins [89]	view 2	view1	dense feature	global feature	negative samples / stop gradient / decorrelation	Boltzmann / Gaussian			
Siamese Image Modeling _{nixel}	-	masked view2	view1	dense feature	dense pixels	-	Gaussian			
Siamese Image Modeling _{feature}	SiameseIM [67]	masked view2	view1	dense feature	dense feature	stop gradient	Gaussian			
Siamese Image Modeling _{global}	MSN [3]	masked view2	view1	dense feature	global feature	negative samples	Boltzmann			

Unified Framework: All Instantiations

Pre-training Method	Typical Work	Input Data <i>x</i>	Target Data y	Input Representation z_x	Target Representation z_y	Regularization $H(p(z_y t_y))$	Distribution Form \hat{P}
Supervised Pre-training : Image Classification	ViT [24]	view1	category	dense feature	category embedding	negative categories	Boltzmann
Weakly-supervised Pre-training Contrastive Language- 12 SSPe Methods, som	ne of which have not b	been ⁱ explor	red as	prentraining	beforebedding	negative texts	Boltzmann
Self-supervised Pre-training (in Auto-Encoder ¹ Dense Distillation Global Distillation Masked Image Modeling _{pixel}	- FD [80],BEiT v2 tokenizer [54] - MAE [30]	view1 view1 view1 masked view1	view1 view1 view1 view1	dense feature dense feature dense feature dense feature	dense pixels dense feature global feature dense pixels	stop gradient stop gradient	Gaussian Gaussian Boltzmann Gaussian
² Masked Image Modeling _{feature}	data2vec [4],MILAN [35], BEiT [5],BEiT v2 [54]	masked view1	view1	dense feature	dense feature	stop gradient	Gaussian
Masked Image Modeling _{global}	-	masked view1	view1	dense feature	global feature	stop gradient	Gaussian
Self-supervised Pre-training (in	ter-view) :						
Novel View Synthesis	-	view2	view1	dense feature	dense pixels	-	Gaussian
Dense Instance Discrimination	DenseCL [79]	view2	view1	dense feature	dense feature	negative samples	Boltzmann
³ Instance Discrimination	MoCo [31],BYOL [27], Barlow Twins [89]	view 2	view1	dense feature	global feature	negative samples / stop gradient / decorrelation	Boltzmann / Gaussian
Siamese Image Modeling _{pixel}	-	masked view2	view1	dense feature	dense pixels	-	Gaussian
Siamese Image Modeling _{feature}	SiameseIM [67]	masked view2	view1	dense feature	dense feature	stop gradient	Gaussian
Siamese Image Modeling $_{global}$	MSN [3]	masked view2	view1	dense feature	global feature	negative samples	Boltzmann

Compare 12 SSP Methods

Dra training Mathad	Input	Target	ImageNet	COCO
Pre-training Method	Data x	Representation z_y	Top1	AP ^{box}
Self-supervised Pre-training (intra-	view)			
(a) Auto-Encoder	view1	dense pixels	77.5	0.0^{\dagger}
(b) Dense Distillation	view1	dense feature	78.8	32.4
(c) Global Distillation	view1	global feature	77.1	27.9
(d) Masked Image Modeling _{pixel}	masked view1	dense pixels	83.1	46.8
(e) Masked Image Modeling _{feat}	masked view1	dense feature	83.3	47.4
(f) Masked Image Modeling _{gloal}	masked view1	global feature	83.2	47.5
Self-supervised Pre-training (inter-	view)			
(g) Novel View Synthesis	view2	dense pixels	78.8	33.0
(h) Dense Instance Discrimination	view2	dense feature	83.2	50.1
(i) Instance Discrimination	view2	global feature	83.0	46.4
(j) Siamese Image Modeling _{pixel}	masked view2	dense pixels	78.9	38.1
(k) Siamese Image Modeling _{feat}	masked view2	dense feature	83.7	49.8
(l) Instance Discrimination _{mask}	masked view2	global feature	82.9	46.2

Multi-Input Multi-target

$$(s, t_x, t_y, X, Y) \sim D_{\text{train}}$$
(s)

$$z_x = f_\theta (X = \{x_i\}_{i=1}^N)$$
(e)

$$z_y^k = f_{\phi_k}(Y_k), Y_k = \{y_{k_j}\}_{j=1}^{M_k}$$
(e)

$$\hat{z}_y^k = f_{\psi_k}(z_x, t_x, t_y)$$
(f)

(sample inputs and targets)
(encode multiple inputs jointly)
(encode multiple targets separately)
(predict multiple targets separately)

$$I(\boldsymbol{z}_{x};\{\boldsymbol{z}_{y}^{k}\}_{k=1}^{K}|\boldsymbol{t}_{x},\boldsymbol{t}_{y}) \geq \sup_{\{f_{\psi_{k}}\}_{k=1}^{K}} \mathbb{E}\left[H\left(p\left(\{\boldsymbol{z}_{y}^{k}\}_{k=1}^{K}|\boldsymbol{t}_{y}\right)\right)\right]$$

regularization term to avoid collapse

+
$$\sum_{k=1}^{K} \mathbb{E}_{p(s,t_x,t_y)} \left[\log \hat{P}_k(\boldsymbol{z}_y^k \mid \hat{\boldsymbol{z}}_y^k) \right]$$
,
(log-likelihood) prediction term for target representation

$$\Rightarrow L(\boldsymbol{s}, \boldsymbol{t}_x, \boldsymbol{t}_y) = \sum_{k=1}^{K} -\log \hat{P}_k \big(\boldsymbol{z}_y^k(\phi_k) \mid \hat{\boldsymbol{z}}_y^k(\theta, \psi_k) \big), \qquad (4)$$

Ablation of Multi-Target

Dra training Mathad	ImageNet	COCO	LV	/IS	ADE20k
Fie-training Method	Top1	AP ^{box}	AP ^{box}	AP ^{box} rare	mIoU
Image Classification	81.8	46.6	33.0	25.5	45.1
Best Intra-view SSP	83.3	47.4	31.2	21.9	40.1
Best Inter-view SSP	83.7	49.8	35.2	26.9	47.7
Ours					
M3I Pre-training w/o mix	83.7	50.3	36.6	27.2	48.7
M3I Pre-training	83.9	50.8	37.5	29.6	49.0

Ablation of Multi-Input

Pro training Mathod	ImageNet	COCO	LV	VIS	ADE20k
Fie-training Method	Top1	AP ^{box}	AP ^{box}	AP ^{box} rare	mIoU
Image Classification	81.8	46.6	33.0	25.5	45.1
Best Intra-view SSP	83.3	47.4	31.2	21.9	40.1
Best Inter-view SSP	83.7	49.8	35.2	26.9	47.7
Ours					
M3I Pre-training w/o mix	83.7	50.3	36.6	27.2	48.7
M3I Pre-training	83.9	50.8	37.5	29.6	49.0

Result on InternImage-H (1B)

Pre-training Approach	Model	Pipeline	Public Data Private		ImageNet	COCO	LVIS	ADE20k
		1			val	test-dev	minival	val
M3I Pre-training	InternImage-H [78] (1B)	Single Stage: M3I Pre-training	427M image-text 15M image-category	-	89.2	65.4	62.5	62.9
[47]	$\Omega_{\rm min} W \Omega C (2D)$	Stage 1: Masked Image Modeling _{pixel}	15M image actors	55M :	80.2	62.1		50.0
[47]	SwinV2-G (3B) Stage 2: Image Classification		15M image-category	55M image-category	89.2	63.1	-	59.9
	BEiT-3 (2B)	Stage 1: CLIP	21M image-text	400M image-text			-	62.8
[77]		Stage 2: Dense Distillation			89.6	63.7		
		Stage 3: Masked Data Modeling	151vi iniuge europory					
		Stage 1: Masked Image Modeling _{pixel}						
[80]	SwinV2-G (3B)	Stage 2: Image Classification	15M image-category	55M image-category	89.4	64.2	-	61.4
		Stage 3: Dense Distillation						
[†] previous best					89.1 ^a	64.5 ^b	59.8 [°]	60.8 ^d

† previous best results on these tasks with only public training data. Results reference: a. MOAT, b. Group DETR v2, c. GLIPv2, d. Mask DINO

Achieves SoTA performance on various benchmarks in public-data only setting

Result on ViT-B

Task	Metric		ImageNet I	Pre-train		YFCC P	re-train
Task	Wieute	SSP (intra-view)	i-view)SSP (inter-view)SPM3I (ImageNet)WSPM3I (T_{1} ×83.8 (DeiT-III)83.3 $^{\dagger}37.6$ (CLIP) $^{\dagger}39$ T)78.0 (SiameseIM)83.8 (DeiT-III)83.866.5 (CLIP)722vec)84.1 (SiameseIM)83.8 (DeiT-III)84.280.5 (CLIP)83E)52.1 (SiameseIM)47.6 (Sup.)52.2-51	M3I (YFCC)			
ImageNet w/o Fine-tuning	Top1 acc.	×	×	83.8 (DeiT-III)	83.3	[†] 37.6 (CLIP)	[†] 39.1
ImageNet Linear Classification	Top1 acc.	79.5 (iBOT)	78.0 (SiameseIM)	83.8 (DeiT-III)	83.8	66.5 (CLIP)	72.3
ImageNet Fine-tuning	Top1 acc.	84.2 (data2vec)	84.1 (SiameseIM)	83.8 (DeiT-III)	84.2	80.5 (CLIP)	83.7
СОСО	AP ^{box}	51.6 (MAE)	52.1 (SiameseIM)	47.6 (Sup.)	52.2	-	51.9
IVIS	AP ^{box}	40.1 (MAE)	40.5 (SiameseIM)	37.2 (Sup.)	40.6	-	40.8
	AP ^{box} rare	38.1 (MAE)	38.1 (SiameseIM)	-	38.2	-	38.4
ADE20k	mIoU	50.0 (iBOT)	51.1 (SiameseIM)	49.3 (DeiT-III)	51.3	-	51.3

M3I Pretraining can maintain all desired properties through a single-stage pre-training

Conclusion

- Multi-stage pre-training methods has several problems
- We proposed a generic pre-training framework that unifies mainstream pretraining approaches
- We proposed an single-stage all-in-one pre-training method, M3I Pre-training
- Our approach surpasses previous pre-training methods in various transferlearning settings

Poster ID: WED-PM-337

Contact Person: Weijie Su

E-mail: jackroos@mail.ustc.edu.cn

