

Deformable DETR: Deformable Transformers for End-to-End Object Detection

Xizhou Zhu*, **Weijie Su***, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai

SenseTime Research; University of Science and Technology of China; The Chinese University of Hong Kong

• Rely on Hand-Crafted Components

- Rely on Hand-Crafted Components, e.g.,
 - anchor generation → anchor-free detector

https://www.mathworks.com/help/vision/ug/anchor-boxes-for-object-detection.html

• Rely on Hand-Crafted Components, e.g.,

- anchor generation \rightarrow anchor-free detector
- rule-based training target assignment → automatic target assignment

Zhu, Benjin, et al. "Autoassign: Differentiable label assignment for dense object detection." arXiv:2007.03496 (2020).

• Rely on Hand-Crafted Components, e.g.,

- anchor generation \rightarrow anchor-free detector
- rule-based training target assignment \rightarrow automatic target assignment
- non-maximum suppression (NMS) post-processing → learnable deduplication

Hu, Han, et al. "Relation networks for object detection." In CVPR 2018.

- Rely on Hand-Crafted Components, e.g.,
 - anchor generation \rightarrow anchor-free detector
 - rule-based training target assignment → automatic target assignment
 - non-maximum suppression (NMS) post-processing → learnable deduplication
- Not Fully End-to-End
 - complex combination of hand-crafted components
 - requiring manually adjustment (e.g., anchor size and NMS threshold) for specific datasets

DETR - The First End-to-End Object Detector

- Eliminate the need for hand-crafted components
- Achieve very competitive performance with previous modern object detectors

DETR - Architecture

DETR - Architecture

DETR - Architecture

DETR - Training Target Assignment (Bipartite Matching)

Predicted boxes Ground-truth boxes

Bipartite matching assignment to minimize the classification and regression costs

DETR - Visualizing Decoder Cross-Attention

- Different color indicates different object query
- Each object query attends to the object extremities of each object instance

Two main issues of DETR

- Slow convergence
 - 500 epochs to converge on COCO, 10x~20x slower than Faster R-CNN
- Limited feature resolution
 - 4.1 lower AP on small objects than Faster R-CNN+FPN

Two main issues of DETR

- Slow convergence
 - 500 epochs to converge on COCO, 10x~20x slower than Faster R-CNN
- Limited feature resolution
 - 4.1 lower AP on small objects than Faster R-CNN+FPN

Core reason: Limitation of Transformer attention in processing image feature maps

• Quadratic complexity (encoder self-attention)

- memory and computation complexity: $O(N^2)$, N is the number of pixels
- couldn't afford high resolution feature maps
- Needs long training schedule so that attention weight focus on specific keys
 - $A_{mqk} \approx \frac{1}{N_k}$ at initialization, nearly uniform attention weights to all the pixels
 - N_k is the number of key elements
 - In the image domain, where the key elements are usually of image pixels, N_k can be very large and the convergence is tedious

Core reason: Limitation of Transformer attention in processing image feature maps

• Quadratic complexity (encoder self-attention)

- memory and computation complexity: $O(N^2)$, N is the number of pixels
- couldn't afford high resolution feature maps
- Needs long training schedule so that attention weight focus on specific keys
 - $A_{mqk} \approx \frac{1}{N_k}$ at initialization, nearly uniform attention weights to all the pixels
 - N_k is the number of key elements
 - In the image domain, where the key elements are usually of image pixels, N_k can be very large and the convergence is tedious

Efficient Sparse Attention in Image Domain

Dense attention (e.g., Transformer^[1], Non-Local^[2])

look over **all possible** spatial locations

Efficient Sparse Attention in Image Domain

Dense attention (e.g., Transformer^[1], Non-Local^[2])

look over **all possible** spatial locations

[3] Ho, Jonathan, et al. "Axial Attention in Multidimensional Transformers." In ICLR 2020.

- [4] Huang, Zilong, et al. "Ccnet: Criss-cross attention for semantic segmentation." In ICCV 2019.
- [5] Parmar, Niki, et al. "Image transformer." In PMLR 2018.
- [6] Ramachandran, Prajit, et al. "Stand-alone self-attention in vision models." In NeurIPS 2019.
- [7] Hu, Han, et al. "Local relation networks for image recognition." In ICCV 2019.

Efficient Sparse Attention in Image Domain

Dense attention (e.g., Transformer^[1], Non-Local^[2])

look over **all possible** spatial locations

[3] Ho, Jonathan, et al. "Axial Attention in Multidimensional Transformers." In ICLR 2020.

[7] Hu, Han, et al. "Local relation networks for image recognition." In ICCV 2019.

[5] Parmar, Niki, et al. "Image transformer." In PMLR 2018.

[4] Huang, Zilong, et al. "Ccnet: Criss-cross attention for semantic segmentation." In ICCV 2019.

[6] Ramachandran, Prajit, et al. "Stand-alone self-attention in vision models." In NeurIPS 2019.

much slower in implementation than traditional convolution with the same FLOPs (at least 3× slower)

Deformable Convolution as Self-Attention

(a) standard convolution (b) deformable convolution

(c) effective sampling locations in deformable convolutions

Deformable convolution is effective and efficient on image recognition

However, it lacks the element relation modeling mechanism.

[1] Dai, Jifeng, et al. "Deformable convolutional networks." In ICCV 2017.
[2] Zhu, Xizhou, et al. "Deformable convnets v2: More deformable, better results." In CVPR 2019.
[3] Zhu, Xizhou, et al. "An empirical study of spatial attention mechanisms in deep networks." In ICCV 2019.

Deformable Attention

• Self-attention patterns for each attention head

(a) Transformer Attention

(b) Sparse Local Attention inefficient in implementation

(c) Deformable Convolution lacks the relation modeling

Deformable Attention

• Self-attention patterns for each attention head

(a) Transformer Attention

(b) Sparse Local Attention inefficient in implementation (c) Deformable Convolution lacks the relation modeling

• Formulation

Reference point

- In encoder: the query point itself
- In decoder: predicted from object query embedding

• Formulation

- Equivalent to **Deformable Convolution**, when K = 1 and W'_m is fixed as an identity matrix
- Equivalent to **Transformer Attention**, when K = HW and the sampling points traverse all possible locations

DeformAttn $(\boldsymbol{z}_q, \boldsymbol{p}_q, \boldsymbol{x}) = \sum_{m=1}^{M} \boldsymbol{W}_m \Big[\sum_{k=1}^{K} A_{mqk} \cdot \boldsymbol{W}'_m \boldsymbol{x} (\boldsymbol{p}_q + \Delta \boldsymbol{p}_{mqk}) \Big],$ (2)

inputs

DeformAttn
$$(\boldsymbol{z}_q, \boldsymbol{p}_q, \boldsymbol{x}) = \sum_{m=1}^{M} \boldsymbol{W}_m \Big[\sum_{k=1}^{K} A_{mqk} \cdot \boldsymbol{W}'_m \boldsymbol{x} (\boldsymbol{p}_q + \Delta \boldsymbol{p}_{mqk}) \Big],$$
 (2)

DeformAttn
$$(\boldsymbol{z}_q, \boldsymbol{p}_q, \boldsymbol{x}) = \sum_{m=1}^{M} \boldsymbol{W}_m \Big[\sum_{k=1}^{K} A_{mqk} \cdot \boldsymbol{W}'_m \boldsymbol{x} (\boldsymbol{p}_q + \Delta \boldsymbol{p}_{mqk}) \Big],$$
 (2)

Multi-scale Deformable Attention Module

 $\phi_l(\widehat{p}_q)$ normalized coordinate (ranged in [0, 1]) of \widehat{p}_q

single-scale feature map \rightarrow multi-scale feature maps *K* sampling points $\rightarrow L \times K$ sampling points (i.e., *K* sampling points per feature level)

Deformable DETR object detector

Replace Transformer attention in DETR by multi-scale deformable attention while processing image feature maps

Experiment: Comparison with DETR

Table 1: Comparision of Deformable DETR with DETR on COCO 2017 val set. DETR-DC5⁺ denotes DETR-DC5 with Focal Loss and 300 object queries.

Method	Epochs	AP	AP ₅₀	AP ₇₅	APs	AP _M	APL	params	FLOPs	Training GPU hours	Inference FPS	
Faster R-CNN + FPN	109	42.0	62.1	45.5	26.6	45.4	53.4	42M	180G	380	26	
DETR	500	42.0	62.4	44.2	20.5	45.8	61.1	41M	86G	2000	28	
DETR-DC5	500	43.3	63.1	45.9	22.5	47.3	61.1	41M	187G	7000	12	
DETR-DC5	<mark>, 5</mark> 0	35.3	55.7	36.8	15.2	37.5	53.6	41M	187G	700 20	\times ¹² 1	â×
DETR-DC5 ⁺	^ 50	36.2	57.0	37.4	16.3	39.2	53.9	41M	187G	700 20		
Deformable DETR	50	43.8	62.6	47.7	26.4	47.1	58.0	40M	173G	325	19	
+ iterative bounding box refinement	50	45.4	64.7	49.0	26.8	48.3	61.7	40M	173G	325	19	
++ two-stage Deformable DETR	50	46.2	65.2	50.0	28.8	49.2	61.7	40M	173G	340	19	

better performance (especially on small objects)

with 10x less training epoch, 20x less training time, 1.6x faster inference speed

Experiment: Convergence curve

Experiment: Comparison with SOTA methods

Table 3: Comparison of Deformable DETR with state-of-the-art methods on COCO 2017 test-dev set. "TTA" indicates test-time augmentations including horizontal flip and multi-scale testing.

Method	Backbone	TTA	AP	AP_{50}	AP ₇₅	AP_S	AP_M	AP_{L}
FCOS (Tian et al., 2019)	ResNeXt-101		44.7	64.1	48.4	27.6	47.5	55.6
ATSS (Zhang et al., 2020b)	ResNeXt-101 + DCN	\checkmark	50.7	68.9	56.3	33.2	52.9	62.4
TSD (Song et al., 2020)	SENet154 + DCN	\checkmark	51.2	71.9	56.0	33.8	54.8	64.2
EfficientDet-D7 (Tan et al., 2020)	EfficientNet-B6		52.2	71.4	56.3	-	-	-
Deformable DETR	ResNet-50		46.9	66.4	50.8	27.7	49.7	59.9
Deformable DETR	ResNet-101		48.7	68.1	52.9	29.1	51.5	62.0
Deformable DETR	ResNeXt-101		49.0	68.5	53.2	29.7	51.7	62.8
Deformable DETR	ResNeXt-101 + DCN		50.1	69.7	54.6	30.6	52.8	64.7
Deformable DETR	ResNeXt-101 + DCN	\checkmark	52.3	71.9	58.1	34.4	54.4	65.6

Comparable with SOTA, the first high-performance end-to-end object detector

Conclusion

- Deformable DETR is an end-to-end object detector, which is efficient and fast-converging.
- Compared with DETR, Deformable DETR can achieve better performance (especially on small objects) with 10× less training epochs.
- It enables us to explore more interesting and practical variants of end-to-end object detectors.
- We hope our work opens up new possibilities in exploring end-to-end object detection.

code

paper

We are hiring @ SenseTime Research!

- Intern / Researcher / Developer / Ph.D Program (related to computer vision or deep learning)
- Email:

Jifeng Dai : <u>daijifeng@sensetime.com</u> Xizhou Zhu : <u>zhuwalter@sensetime.com</u>